Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Total Environ ; 922: 171285, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423304

RESUMEN

The role of environmental factors on the community structure of algae has been intensively studied, but there are few analyses on the assembly mechanism of the algal community structure. Here, changes in the community structure of algae in different seasons, the effects of environmental variables on the algal community structure, and the assembly mechanism of the algal community structure in northern and southern reservoirs were investigated in this study. The study revealed that Bacillariophyta, Cyanophyta, and Chlorophyta were the predominant algal species in the reservoirs, with Bacillariophyta and Cyanophyta exhibiting seasonal outbreaks. Compared to the northern reservoirs, the algal diversity in the southern reservoirs was greater. The diversity and algal community structure could be significantly impacted by variations in water temperature and nitrogen level. According to the ecological model, the interaction among algal communities in reservoirs was primarily cooperation. The key taxa in the northern reservoirs was Aphanizomenon sp., while the outbreak in the southern reservoirs was Coelosphaerium sp. The community formation pattern of reservoirs was stochastic, with a higher degree of explanation observed in the southern reservoirs compared to the northern reservoirs. This study preliminarily explored the assembly mechanism of the algal community, providing a theoretical basis for the control of eutrophication in drinking water reservoirs.


Asunto(s)
Cianobacterias , Diatomeas , Agua Potable , Agua Potable/análisis , Fitoplancton , Estaciones del Año , Eutrofización , China , Fósforo/análisis
2.
Sci Total Environ ; 915: 170086, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232825

RESUMEN

Reservoir connectivity provides a solution for regional water shortages. Understanding the water quality of reservoirs and the response of algal communities to water transfer could provide the basis for a long-term evolutionary model of reservoirs. In this study, a water-algal community model was established to study the effects of water transfer on water quality and algal communities in reservoirs. The results showed that water transfer significantly decreased total nitrogen and nitrate concentrations. However, the water transfer resulted in an increase in the CODMn concentration and conductivity in the receiving reservoir. Additionally, the algal density and chlorophyll-a (chl-a) concentration showed an increase with water transfer. Bacillariophyta, Cyanophyta, and Chlorophyta were the dominant algal phyllum in all three reservoirs. Water transfer induced the evolution of the algal community by driving changes in the chemical parameters of the receiving reservoir and led to more complex relationships within the algal community. The effects of stochastic processes on algal communities were also enhanced in the receiving reservoirs. These results provide specific information for water quality safety management and eutrophication prevention in connected reservoirs.


Asunto(s)
Cianobacterias , Diatomeas , Calidad del Agua , Clorofila A , Eutrofización , China , Fósforo/análisis , Nitrógeno/análisis , Monitoreo del Ambiente
3.
Huan Jing Ke Xue ; 44(3): 1452-1464, 2023 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-36922206

RESUMEN

Seasonal algal blooms produce a high risk for water supply safety. To explore the mechanism of seasonal algal blooms in northern eutrophic stratified reservoirs, the combination of taxonomic and functional classifications, local weighted regression (LOWESS), and Boundary line analysis (BLA) were employed to obtain the succession features and environmental thresholds of seasonal (e.g., spring and summer) algal blooms, based on the long-term and high-frequency monitoring from 2017 to 2020 in Lijiahe Reservoir. The results showed that:① the succession and response mechanisms of algal blooms were different in spring and summer. In detail, Chlorophyta, Bacillariophyta, and Dinoflagellates (e.g., low-temperature, small, high surface-to-volume genera) dominated in spring, whereas Chlorophyta, Bacillariophyta, and Cyanobacteria (e.g., high-temperature, large or colonial, low surface-to-volume genera) dominated in summer. The differences in physiological and morphological characteristics of algae were the internal cause triggering seasonal algal blooms. ② The main drivers of algal blooms were different in spring and summer. Spring blooms were controlled by water temperature (WT), mixing depth (i.e., Zmix), and light availability (i.e., Zeu/Zmix), whereas summer blooms were jointly influenced by WT, Zmix, Zeu/Zmix, and total phosphorus (TP). The differences in the changes of the major drivers were external causes triggering seasonal algal blooms. ③ The water environment thresholds starting seasonal algal blooms were different in spring and summer. The thresholds of WT, Zmix, and Zeu/Zmix in spring were>9.4℃, <10.9 m, and>0.24, respectively, whereas the thresholds of WT, Zmix, Zeu/Zmix, and TP in summer were>16.0℃, <11.6 m, >0.16, and>0.011 mg·L-1, respectively. Based on the research on the mechanism of seasonal algal blooms and related thresholds, this work will provide a reference for the control of subsequent algal blooms.


Asunto(s)
Eutrofización , Agua Dulce , Estaciones del Año , Temperatura , Luz Solar , Fósforo/análisis , China , Agua Dulce/química , Monitoreo del Ambiente
4.
J Environ Manage ; 322: 116048, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067671

RESUMEN

Induced (natural) mixing proposed by our teams can solve a big problem of low-energy water situation improvement of stratified reservoirs by minimizing operating periods of water-lifting aerators (WLAs) to advance a complete natural mixing. Here, the mechanisms influencing water situation via induced mixing were systematically explored using a combination of multi-water-environment assessment methods including trophic level index (TLI), water quality index (WQI), and minimum WQI (WQImin) based on long-term field data (i.e., non-operational and operational years of WLAs). The results showed that induced mixing after WLA deactivation improved the levels of eutrophication and water quality (into "light-eutrophic" and "good" status) with a decrease in TLI values (56.0-56.2) and increase in WQI (79.0-79.9) and WQImin (81.5-89.3) values, compared to mixing of the non-operational year (TLI: 69.6, WQI: 73.4, WQImin: 76.1). Induced mixing was launched by deactivating the WLAs in cooling seasons (i.e., in late September within a subtropical monsoon climate zone), which advanced and prolonged the periods of naturally complete mixing by 2-3 months. Water temperature (WT), Dissolved oxygen (DO), relative water column stability (RWCS) and inflow were primary drivers for the water situation succession in the study years. Induced mixing extended the well-oxygenated and mixed conditions (temperature difference <1.0 °C, DO > 8.5 mg/L, RWCS< 20) following artificial mixing to improve the water status from single index level (improvement of 18.8%-73.7% than mixing before the operational years) to integrated evaluation results by changing WT, DO, and RWCS. This study presents a successful case for energy-saving pollution control using mixing systems.


Asunto(s)
Eutrofización , Calidad del Agua , China , Monitoreo del Ambiente/métodos , Oxígeno , Fósforo/análisis , Estaciones del Año , Temperatura
5.
Bioresour Technol ; 362: 127875, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36049713

RESUMEN

This study aims to develop a functional biocarrier with hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol (WSB/starch-PVA) for simultaneous removal of NO3--N, total phosphorus (TP) and Cd2+ in low carbon wastewater. Results showed that the WSB/starch-PVA bioreactor achieved the maximum NO3--N removal efficiency in subphase 1.2 with 98.07 % (3.64 mg L-1h-1) versus control (75.30 %, 2.81 mg L-1h-1), and removed 54.84 % and 73.97 % of TP and Cd2+. Material characterization suggested that functional groups (related to C, N and O) on biocarrier and biofilm, and biogenic co-precipitation facilitated TP and Cd2+ removal. The WSB made the biocarrier pores larger and regular, and decreased fluorescent soluble microbial products. The predicted metagenome further suggested that central citrate cycle, oxidative phosphorylation of bio-community, and NO3--N removal were enhanced. Functions for microbial induced co-precipitation, Cd2+ transport/efflux, antioxidants, and enhanced biofilm formation favored the NO3--N/TP removal and Cd2+ detoxification.


Asunto(s)
Fósforo , Aguas Residuales , Reactores Biológicos , Cadmio , Carbono , Carbón Orgánico , Desnitrificación , Nitratos , Nitrógeno , Óxidos de Nitrógeno , Alcohol Polivinílico , Almidón
6.
Sci Total Environ ; 847: 157400, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35850327

RESUMEN

Water-lifting aerators (WLAs) are often applied in stratified reservoirs to activate artificial mixing to inhibit harmful algal blooms (HABs). Here, the effects, mechanisms, and operational thresholds of spring Dinoflagellate control via artificial mixing were studied using a combination of taxonomic and functional groups and boundary line models. Algal cell density at two sampling sites (i.e., S1 and S2) decreased to below 1.0 × 106 cells/L (corresponding chlorophyll-a content under 10 µg/L) during artificial mixing, with a Dinoflagellate removal efficiency of 97.1 % at S1 and 95.5 % at S2, respectively. The succession patterns of main phytoplankton taxonomic and functional groups changed greatly during artificial mixing at the sites: from Dinoflagellate and motile Chlorophyta to Bacillariophyta from groups A/LO/P to A, respectively. Water temperature (WT), light availability (Zeu/Zmix), and mixing depth (Zmix) were more effective factors influencing phytoplankton dynamics at a short-term scale, followed by total phosphorus (TP). A decrease in surface WT and Zeu/Zmix, and increase in Zmix alongside the improvement of TP levels, which were induced by WLAs, drove the Dinoflagellate bloom control by a shift of phytoplankton structure from large, motile, and low surface to volume ratio (S/V) to small, immobile, and high S/V algae. The operational threshold values of WT, Zeu/Zmix, Zmix and TP concentration for the suppression of Dinoflagellate growth using mixing systems are recommended as 9.6 °C, 0.17, 11.5 m, and 0.020 mg/L, respectively, based on a boundary line analysis. This work can help improve the cognition of mechanisms controlling HABs using mixing and aeration techniques in reservoirs.


Asunto(s)
Dinoflagelados , Agua Potable , China , Clorofila/análisis , Clorofila A/análisis , Agua Potable/análisis , Eutrofización , Fósforo/análisis , Fitoplancton
7.
Huan Jing Ke Xue ; 41(7): 3231-3239, 2020 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-32608896

RESUMEN

In response to the annual hypolimnetic anoxia in stratified reservoirs, water-lifting aerators (WLAs) were used in Jinpen Reservoir to supplement the dissolved oxygen in the bottom water and suppress the release of reduced pollutants from sediment. However, due to the influence of geomorphic characteristics at the bottom of the reservoir, there were some differences in the efficiency of artificial mixing and aeration. After the deactivation of WLAs, the dissolved oxygen in the bottom water of some deeper areas was rapidly depleted, resulting in the re-release of pollutants. To explore the release mechanisms and diffusion intensity of iron and manganese during this period, the representative samples in the main reservoir area were collected to measure the distribution of dissolved iron and manganese in the pore water and overlying water and calculate the diffusive flux of dissolved iron and manganese across the sediment-water interface. The results showed that the bottom water of the lower terrain rapidly entered the anaerobic condition after the system was deactivated, resulting in the release of a large amount of dissolved manganese into the overlying water, the maximum concentration of which was 0.42 mg·L-1. However, the bottom water of the higher terrain briefly entered a state of hypoxia, after which the dissolved oxygen concentration increased rapidly, so the dissolved manganese concentration increased moderately to 0.17 mg·L-1. The distribution of iron and manganese in the pore-water-overlying water showed that the dissolved manganese was released more easily into the overlying water than the iron under anaerobic conditions and constant accumulation in the upper sediments and overlying water. However, the release of dissolved iron was not only suppressed by dissolved oxygen but also by other oxidants such as manganese oxide. The diffusion flux of dissolved manganese declined after the system was deactivated. A mass balance calculation demonstrated that the accumulation of dissolved manganese in the anaerobic layer was not only related to the diffusion flux but also to the sedimentation flux and the thickness of the anaerobic layer. Therefore, the biogeochemical cycle of iron and manganese in the anaerobic layer requires further study.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31635217

RESUMEN

Chemical reaction of main polymer and additive with oxidative cleaning agents plays an important role in aging of polymeric membrane for water and wastewater treatment. As a green and powerful oxidant, hydrogen peroxide (H2O2) can achieve good cleaning efficacy under alkaline condition, but its influence on membrane aging was poorly understood. In this study, degradation of polyethersulfone (PES) membrane due to H2O2 exposure under alkaline condition (pH 9 and 11) was holistically investigated by humic acid (HA) filtration experiments and multiple membrane characterization techniques, with sodium hypochlorite (NaClO) aging examined as a comparison. Membrane permeability and HA retention rate was hardly changed by H2O2 aging at an exposure dose of 500 g·h/L, whereas NaClO aging led to substantial increase of membrane permeability and significant decrease of retention ability. Meanwhile, H2O2 aging slightly increased fouling propensity with HA filtration, while NaClO aging resulted in more serious fouling. ATR-FTIR and XPS analysis revealed much less degradation of PES and hydrophilic additive by H2O2 than that by NaClO, and membrane morphology and surface properties were characterized to explain the variation of filtration performance. Overall, compared with cleaning with NaClO, membrane degradation can be minimized by cleaning with H2O2.


Asunto(s)
Peróxido de Hidrógeno/química , Polímeros/química , Hipoclorito de Sodio/química , Sulfonas/química , Ultrafiltración , Sustancias Húmicas/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales
9.
Artículo en Inglés | MEDLINE | ID: mdl-30781590

RESUMEN

Nitrogen pollution in reservoirs has received increasing attention in recent years. Although a number of aerobic denitrifying strains have been isolated to remove nitrogen from eutrophic waters, the situation in oligotrophic water environments has not received significant attention. In this study, a mixed aerobic denitrifying consortium screened from reservoir samples was used to remove nitrogen in an oligotrophic denitrification medium and actual oligotrophic source water. The results showed that the consortium removed 75.32% of nitrate (NO3--N) and 63.11% of the total nitrogen (TN) in oligotrophic reservoir water during a 24-h aerobic cultivation. More initial carbon source was helpful for simultaneous removal of carbon and nitrogen in the reservoir source water. NO3--N and TN were still reduced by 60.93% and 46.56% at a lower temperature (10 °C), respectively, though the rates were reduced. Moreover, adding phosphorus promoted bacterial growth and increased TN removal efficiency by around 20%. The performance of the immobilized consortium in source water was also explored. After 6 days of immobilization, approximately 25% of TN in the source water could be removed by the carriers, and the effects could last for at least 9 cycles of reuse. These results provide a good reference for the use of aerobic denitrifiers in oligotrophic reservoirs.


Asunto(s)
Desnitrificación , Consorcios Microbianos/fisiología , Nitrógeno/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Aerobiosis , Biodegradación Ambiental , Carbono/aislamiento & purificación , Fósforo/química , Microbiología del Agua
10.
Artículo en Inglés | MEDLINE | ID: mdl-29463021

RESUMEN

The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in Zhoucun drinking water reservoir. Our study highlights the potential role of microbial diversity as a driving force for the algal bloom and biogeochemical cycling of reservoir ecology.


Asunto(s)
Agua Potable/microbiología , Floraciones de Algas Nocivas , Consorcios Microbianos , Micobioma , Microbiología del Agua , Calidad del Agua , China , Agua Potable/análisis , Nitrógeno/análisis , Fósforo/análisis
11.
Chemosphere ; 180: 1-10, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28376354

RESUMEN

Fenton pre-oxidation and a subsequent bioremediation phase of 80 days were used to investigate the importance of matching concentration of residual indigenous bacteria and nutrient levels on subsequent bioremediation of crude oil. Experiments were performed using either high (>107.7 ± 0.2 CFU/g soil) or low (<105.9 ± 0.1 CFU/g soil) concentrations of bacteria and three different nutrient levels: enough (C/N > 9.8), moderate (C/N:5-9.8), and lacking nutrient level (C/N < 5) conditions. Weak Fenton pre-oxidation (225 mM H2O2 and 2.9 mM Fe2+) resulted in highly matching between nutrient level and the population of residual indigenous bacteria. Up to 53% of total petroleum hydrocarbon (TPH) and 58% of main hydrocarbon (C15C25, during the first 10 days) were removed from the soil. Under matching conditions, the activity of indigenous bacteria and nutrient mobilization were enhanced, promoting the bioremediation of crude oil. In addition, the biodegradation of long chain molecules (C26C30) required a high level of NH4+-N.


Asunto(s)
Biodegradación Ambiental , Contaminación por Petróleo , Petróleo/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Hierro/química , Oxidación-Reducción , Suelo/química , Contaminantes del Suelo/análisis
12.
Huan Jing Ke Xue ; 37(1): 166-72, 2016 Jan 15.
Artículo en Chino | MEDLINE | ID: mdl-27078954

RESUMEN

The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.


Asunto(s)
Agua Potable/química , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , China , Contaminación Ambiental , Nitrógeno/análisis , Fósforo/análisis
13.
Bioresour Technol ; 201: 195-207, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26649898

RESUMEN

Indigenous oligotrophic aerobic denitrifiers nitrogen removal characteristics, community metabolic activity and functional genes were analyzed in a micro-polluted reservoir. The results showed that the nitrate in the enhanced system decreased from 1.71±0.01 to 0.80±0.06mg/L, while the control system did little to remove and there was no nitrite accumulation. The total nitrogen (TN) removal rate of the enhanced system reached 38.33±1.50% and the TN removal rate of surface sediment in the enhanced system reached 23.85±2.52%. TN removal in the control system experienced an 85.48±2.37% increase. The densities of aerobic denitrifiers in the enhanced system ranged from 2.24×10(5) to 8.13×10(7)cfu/mL. The abundance of nirS and nirK genes in the enhanced system were higher than those of in the control system. These results suggest that the enhanced in situ indigenous aerobic denitrifiers have potential applications for the bioremediation of micro-polluted reservoir system.


Asunto(s)
Bacterias Aerobias/metabolismo , Desnitrificación , Nitrógeno/aislamiento & purificación , Contaminación del Agua/análisis , Bacterias Aerobias/genética , Biodegradación Ambiental , Carbono/aislamiento & purificación , Genes Bacterianos , Concentración de Iones de Hidrógeno , Peso Molecular , Oxidación-Reducción , Fósforo/análisis , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , Temperatura , Factores de Tiempo , Agua/química , Purificación del Agua
14.
Environ Sci Pollut Res Int ; 22(23): 18372-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26194232

RESUMEN

Climate variation can have obvious effects on hydrologic conditions, which in turn can have direct consequences for the thermal regime and quality of water for human use. In this research, weekly surveys were conducted from 2011 to 2013 to investigate how changes of climate and hydrology affect the thermal regime and water quality at the Heihe Reservoir. Our results show that the hydrology change during the flooding season can both increase the oxygen concentration and accelerate the consumption of dissolved oxygen. Continuous heavy rainfall events occurred in September 2011 caused the mixing of the entire reservoir, which led to an increase in dissolved oxygen at the bottom until the next year. Significant turbid density flow was observed following the extreme rainfall events in 2012 which leading to a rapid increase in turbidity at the bottom (up to 3000 NTU). Though the dissolved oxygen at the bottom increased from 0 to 9.02 mg/L after the rainfall event, it became anoxic within 20 days due to the increase of water oxygen demand caused by the suspended matter brought by the storm runoff. The release of compounds from the sediments was more serious during the anaerobic period after the rainfall events and the concentration of total iron, total phosphorus, and total manganese at the bottom reached 1.778, 0.102, and 0.125 mg/L. The improved water-lifting aerators kept on running after the storm runoff occurred in 2013 to avoid the deterioration of water quality during anaerobic conditions and ensured the good water quality during the mixing period. Our results suggest preventive and remediation actions that are necessary to improve water quality and status.


Asunto(s)
Agua Dulce/química , Cambio Climático , Hidrología , Oxígeno/análisis , Fósforo/análisis , Estaciones del Año , Temperatura , Contaminantes del Agua/análisis , Calidad del Agua , Abastecimiento de Agua/normas
15.
J Hazard Mater ; 280: 348-55, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25179107

RESUMEN

Extensive microbial re-growth in a drinking water distribution system can deteriorate water quality. The limiting factor for microbial re-growth in a tap water produced by a conventional drinking water treatment plant in China was identified by determining the microbial re-growth potential (MRP) by adding different nutrients to stimulate growth of a natural microbial consortium as inoculum and flow-cytometric enumeration. No obvious change of MRP was found in tap water after addition of carbon, whereas, a 1- to 2-fold increase of MRP was observed after addition of phosphate (P). This clearly demonstrated that microbial re-growth in this tap water was limited by P. Most of the re-grown microbial flora (>85%) consisted of high nucleic acid content cells. A subsequent investigation of the MRP in the actual water treatment plant demonstrated that coagulation was the crucial step for decreasing MRP and producing P-limited water. Therefore, a comparison concerning the control of MRP by three different coagulants was conducted. It showed that all the three coagulants efficiently reduced the MRP and shifted the limitation regime from C to P, but the required dose was different. The study shows that it is feasible to restrict microbial re-growth by P limitation using coagulation in water treatment.


Asunto(s)
Compuestos de Alumbre , Hidróxido de Aluminio , Cloruros , Agua Potable/microbiología , Compuestos Férricos , Microbiología del Agua , Purificación del Agua , Citometría de Flujo , Fosfatos , Fósforo/análisis , Calidad del Agua
16.
Huan Jing Ke Xue ; 34(9): 3423-9, 2013 Sep.
Artículo en Chino | MEDLINE | ID: mdl-24288985

RESUMEN

According to a continuous survey on Shibianyu Reservoir located north of the Qinling Mountains which lasted for about one and a half years and a simulation study in laboratory, conclusions were drawn as follows. The average concentrations of total nitrogen (TN) and total phosphorus (TP) were 2. 67 mg x L(-1) and 0.04 mg x L(-1), respectively, and the highest values were recorded in the high flow period followed by the median water period, while the lowest values were found in the dry period. The reservoir was in severe eutrophication and the content of chlorophyll a and algal cell density reached 50 mg x m(-3) and 10,000 x 10(4) cells x L(-1), respectively. The yearly input and output of TN was respectively 203.1 t and 181.3 t, while the yearly input and output of TP was respectively 4. 2 t and 4.1 t. Exogenous pollution accounted for more than 90% of the total load. The sediment in reservoir showed an accumulation tendency all year round and the net annual accumulation of TN and TP was 20.2 t and 0. 8 t, respectively. The key of controlling reservoir pollution is to control the endogenous pollution.


Asunto(s)
Agua Dulce/análisis , Nitrógeno/análisis , Fósforo/análisis , Estaciones del Año , Contaminantes Químicos del Agua/análisis , China , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Eutrofización
17.
J Environ Sci (China) ; 23(11): 1873-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22432313

RESUMEN

Graded modified Fenton's (MF) oxidation is a strategy in which H2O2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H2O2 continuously. The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H2O2 can prevent sterilization and achieve a maximum degradation of tank oil in soil. Optimization experiments of graded MF oxidation were conducted using citric acid, oxalic acid and SOLV-X as iron chelators under different frequencies of H2O2 addition. The results indicated that the activity order of iron chelates decreased as: citric acid (51%) > SOLV-X (44%) > oxalic acid (9%), and citric acid was found to be an optimized iron chelating agent of graded MF oxidation. Three-time addition of H2O2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%). Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above. After graded oxidation, substantially higher increase (31%) in microbial activity was observed with excessive H2O2 (1470 mmol/L, the mol ratio of H2O2:Fe2+ was 210:1) than that of non-oxidized soil. Removal efficiency of tank oil was up to 93% after four weeks. Especially, the oil fraction (C10-C40) became more biodagradable after graded MF oxidation than its absence. Therefore, graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.


Asunto(s)
Petróleo/microbiología , Contaminantes del Suelo , Biodegradación Ambiental , Peróxido de Hidrógeno/química , Hierro/análisis , Hierro/química , Oxidación-Reducción
18.
Huan Jing Ke Xue ; 30(6): 1838-43, 2009 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-19662877

RESUMEN

In an experimental investigation of bioaugmentation products affected on the petroleum contaminated soil. The influence of the bioaugmentation products dose, injections and temperature on bioremediation were studied. The results showed that the degradation rate was related positively to the amount of inoculation, when the dose was increased to 0.6 mg x kg(-1), total petroleum hydrocarbon (TPH) degradation rate was 87% in 48 days. The results of GC-MS indicated that the dominant petroleum constituents in oil-contaminated raw soil were 82.1% n-alkane, 16% alkene and little of others hydrocarbons, such as carotane, alkylnaphthalenes, hopanes, and steranes. The peaks amount of GC profile decreased from 32 to 14 after 40 days of bioremediation, this result indicated that branched alkanes, alkene, and alkylnaphthalenes were thoroughly degraded, then line alkanes, hopanes, and steranes were left in soil. In addition, the longer part of n-alkane were degraded with rate relatively higher, while the residual fraction at the end of the test is shorter part of n-alkane because bacteria degraded the longer n-alkane to shorter. The shorter n-alkane concentration decreased with increasing inoculation. One time injection of bioaugmentation products into soil clearly improved the biodegradation efficiency higher than injection of bioaugmentation products in turn. Soil temperature also affected TPH degradation rate when it was 30 degrees C, TPH rate reached 80%, where as when it was 20 degrees C, the TPH rate was lower to 60%, which indicated higher temperature improved TPH degradation and accelerated bioremediation.


Asunto(s)
Bacterias/metabolismo , Restauración y Remediación Ambiental/métodos , Petróleo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Recuento de Colonia Microbiana/métodos
19.
Water Sci Technol ; 58(6): 1285-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18845868

RESUMEN

Microbial effects on phosphorus release were studied for the sediments of Tianjin source water by controlling DO and pH. The results show that: (1) In sterilised water, phosphorus began to release when pH = 9.1 and the stable release rate was 9.51 mg/(d.m2). It indicates that microorganisms may utilise anaerobic iron respiration to release Fe-P. (2) With unsterilised water, phosphorus release rate is 2.14 mg/(d.m2) when pH = 6.5, 8.60 mg/(d.m2) when pH is uncontrolled, and gets to 8.51 mg/(d.m2) when pH = 9.1. This indicates that microorganisms can dissolve insoluble phosphates to accelerate the ion exchange of OH(-) and PO4(3-), which are derived from iron-bound ortho-P and aluminium-bound ortho-P.


Asunto(s)
Reactores Biológicos/microbiología , Sedimentos Geológicos/microbiología , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA